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I. PARALLELISM 

Parallel Lines by Blondie.  Source: 
http://xponentialmusic.org/blogs/885mmmm/2007/10/09/403-blondie-hits-1-with-heart-of-glass/ 

I. Parallelism 

•  Concepts of parallelization 

•  Serial vs. parallel 

•  Parallelization strategies 
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Parallelization Concepts 

•  When performing task, some subtasks depend on one 
another, while others do not 

•  Example: Preparing dinner 
–  Salad prep independent of lasagna baking 

–  Lasagna must be assembled before baking 

•  Likewise, in solving scientific problems, some tasks 
independent of one another 

Serial vs. Parallel 

•  Serial: tasks must be performed in sequence 

•  Parallel: tasks can be performed independently in any order 
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Serial vs. Parallel: Example 

•  Example: Preparing dinner 

–  Serial tasks: making sauce, 
assembling lasagna, baking 
lasagna; washing lettuce, 
cutting vegetables, assembling 
salad 

–  Parallel tasks: making lasagna, 
making salad, setting table 

Serial vs. Parallel: Example 

•  Could have several chefs, each 
performing one parallel task 

•  This is concept behind parallel 
computing 
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Parallel Algorithm Design: PCAM 

•  Partition: Decompose problem into fine-grained 
tasks to maximize potential parallelism 

•  Communication: Determine communication pattern 
among tasks 

•  Agglomeration: Combine into coarser-grained 
tasks, if necessary, to reduce communication 
requirements or other costs 

•  Mapping: Assign tasks to processors, subject to 
tradeoff between communication cost and 
concurrency 

(taken from Heath: Parallel Numerical Algorithms) 

Discussion: Jigsaw Puzzle* 

•  Suppose we want to do 5000 piece jigsaw puzzle 

•  Time for one person to 
 complete puzzle: n hours 

•  How can we decrease walltime  
 to completion? 

* Thanks to Henry Neeman 
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Discussion: Jigsaw Puzzle 

•  Add another person at the table 

–  Effect on wall time 

–  Communication 

–  Resource contention 

•  Add p people at the table 

–  Effect on wall time 

–  Communication 

–  Resource contention 

Discussion: Jigsaw Puzzle 

•  What about: p people,  p tables, 
5000/p pieces each? 

•  What about: one person works 
on river, one works on sky, one 
works on mountain, etc.? 
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II. ARCHITECTURE 

Image: Louvre Abu Dhabi – Abu Dhabi, UAE, designed by Jean Nouvel, from 
http://www.inhabitat.com/2008/03/31/jean-nouvel-named-2008-pritzker-architecture-laureate/ 

II. Supercomputer Architecture 

•  What is a supercomputer? 

•  Conceptual overview of architecture 

Cray 1 
(1976) 

IBM Blue 
Gene 
(2005) 

Architecture of IBM Blue 
Gene 

Cray XT5 
(2009) 
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What Is a Supercomputer? 

•  “The biggest, fastest computer right this minute.” -- 
Henry Neeman 

•  Generally 100-10,000 times more powerful than PC 

•  This field of study known as supercomputing, high-
performance computing (HPC), or scientific computing 

•  Scientists use really big computers to solve really hard 
problems 

SMP Architecture 

•  Massive memory, shared by multiple processors 

•  Any processor can work on any task, no matter its 
location in memory 

•  Ideal for parallelization of sums, loops, etc. 
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Cluster Architecture 

•  CPUs on racks, do computations (fast) 

•  Communicate through myrinet connections (slow) 

•  Want to write programs that divide computations 
evenly but minimize communication 

State-of-the-Art Architectures 

•  Today, hybrid architectures gaining acceptance 

•  Multiple {quad, 8, 12}-core nodes, connected to other 
nodes by (slow) interconnect 

•  Cores in node share memory (like small SMP 
machines) 

•  Machine appears to follow cluster architecture (with 
multi-core nodes rather than single processors) 

•  To take advantage of all parallelism, use MPI (cluster) 
and OpenMP (SMP) hybrid programming 
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III. MPI 

MPI also stands for Max Planck Institute for Psycholinguistics.  Source: http://www.mpi.nl/WhatWeDo/istitute-pictures/building 

III. Basic MPI 

•  Introduction to MPI 

•  Parallel programming concepts 

•  The Six Necessary MPI Commands 

•  Example program 
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Introduction to MPI 

•  Stands for Message Passing Interface 

•  Industry standard for parallel programming (200+ page 
document) 

•  MPI implemented by many vendors; open source 
implementations available too 

–  ChaMPIon-PRO, IBM, HP, Cray vendor implementations 

–  MPICH, LAM-MPI, OpenMPI (open source) 

•  MPI function library is used in writing C, C++, or Fortran 
programs in HPC 

•  MPI-1 vs. MPI-2: MPI-2 has additional advanced functionality 
and C++ bindings, but everything learned today applies to 
both standards 

Parallelization Concepts 

•  Two primary programming paradigms: 
–  SPMD (single program, multiple data) 

–  MPMD (multiple programs, multiple data) 

•  MPI can be used for either paradigm 
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SPMD vs. MPMD 

•  SPMD: Write single program that will perform same 
operation on multiple sets of data 
–  Multiple chefs baking many lasagnas 

–  Rendering different frames of movie 

•  MPMD: Write different programs to perform different 
operations on multiple sets of data 
–  Multiple chefs preparing four-course dinner 

–  Rendering different parts of movie frame 

•  Can also write hybrid program in which some 
processes perform same task 

The Six Necessary MPI Commands 

•  int MPI_Init(int *argc, char **argv)	

•  int MPI_Finalize(void)	

•  int MPI_Comm_size(MPI_Comm comm, int 
*size)	


•  int MPI_Comm_rank(MPI_Comm comm, int 
*rank)	


•  int MPI_Send(void *buf, int count, 
MPI_Datatype datatype, int dest, int tag, 
MPI_Comm comm)	


•  int MPI_Recv(void *buf, int count, 
MPI_Datatype datatype, int source, int 
tag, MPI_Comm comm, MPI_Status *status)	
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Initiation and Termination 

•  MPI_Init(int *argc, char **argv) 
initiates MPI 
–  Place in body of code after variable declarations and before 

any MPI commands 

•  MPI_Finalize(void) shuts down MPI 
–  Place near end of code, after last MPI command 

Environmental Inquiry 

•  MPI_Comm_size(MPI_Comm comm, int 
*size)  
–  Find out number of processes 

–  Allows flexibility in number of processes used in program 

•  MPI_Comm_rank(MPI_Comm comm, int 
*rank)  
–  Find out identifier of current process 

–  0 ≤ rank ≤ size-1 
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Message Passing: Send 

•  MPI_Send(void *buf, int count, 
MPI_Datatype datatype, int dest, int 
tag, MPI_Comm comm) 
–  Send message of length count bytes and datatype 
datatype contained in buf with tag tag to process 
number dest in communicator comm 

–  E.g. MPI_Send(&x, 1, MPI_DOUBLE, manager, 
me, MPI_COMM_WORLD)	


Message Passing: Receive 

•  MPI_Recv(void *buf, int count, 
MPI_Datatype datatype, int source, 
int tag, MPI_Comm comm, MPI_Status 
*status)	

–  Receive message of length count bytes and datatype 
datatype with tag tag in buffer buf from process 
number source in communicator comm and record status 
status 

–  E.g. MPI_Recv(&x, 1, MPI_DOUBLE, source, 
source, MPI_COMM_WORLD, &status)	
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Message Passing 

•  WARNING! Both standard send and receive functions 
are blocking 

•  MPI_Recv returns only after receive buffer contains 
requested message 

•  MPI_Send may or may not block until message 
received (usually blocks) 

•  Must watch out for deadlock 

Deadlocking Example (Always) 

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

    int me, np, q, sendto;	

    MPI_Status status;	

    MPI_Init(&argc, &argv);	

    MPI_Comm_size(MPI_COMM_WORLD, &np);	

    MPI_Comm_rank(MPI_COMM_WORLD, &me);	

    if (np%2==1) return 0;	

    if (me%2==1) {sendto = me-1;}	

    else {sendto = me+1;}	

    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	

	
 	
sendto, q, sendto);	

    MPI_Finalize();	

    return 0;	

}	
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Deadlocking Example (Sometimes) 

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

    int me, np, q, sendto;	

    MPI_Status status;	

    MPI_Init(&argc, &argv);	

    MPI_Comm_size(MPI_COMM_WORLD, &np);	

    MPI_Comm_rank(MPI_COMM_WORLD, &me);	

    if (np%2==1) return 0;	

    if (me%2==1) {sendto = me-1;}	

    else {sendto = me+1;}	

    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	

	
 	
sendto, q, sendto);	

    MPI_Finalize();	

    return 0;	

}	


Deadlocking Example (Safe) 

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

    int me, np, q, sendto;	

    MPI_Status status;	

    MPI_Init(&argc, &argv);	

    MPI_Comm_size(MPI_COMM_WORLD, &np);	

    MPI_Comm_rank(MPI_COMM_WORLD, &me);	

    if (np%2==1) return 0;	

    if (me%2==1) {sendto = me-1;}	

    else {sendto = me+1;}	

    if (me%2 == 0) {	

        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

	
 } else {	

        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

    }	

    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, 

sendto);	

    MPI_Finalize();	

    return 0;	

}	
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Explanation: Always Deadlock Example 

•  Logically incorrect 

•  Deadlock caused by blocking MPI_Recvs 

•  All processes wait for corresponding MPI_Sends to 
begin, which never happens 

Explanation: Sometimes Deadlock Example 

•  Logically correct 

•  Deadlock could be caused by MPI_Sends competing 
for buffer space 

•  Unsafe because depends on system resources 

•  Solutions: 
–  Reorder sends and receives, like safe example, having evens 

send first and odds send second 
–  Use non-blocking sends and receives or other advanced 

functions from MPI library (see MPI standard for details) 
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IV. MPI COLLECTIVES 
“Collective Farm Harvest Festival” (1937) by Sergei Gerasimov.  Source: 
http://max.mmlc.northwestern.edu/~mdenner/Drama/visualarts/neorealism/34harvest.html 

MPI Collectives 

•  Communication involving group of processes 

•  Collective operations 
–  Broadcast 

–  Gather 

–  Scatter 

–  Reduce 

–  All- 

–  Barrier 
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Broadcast 

•  Perhaps one message needs to be sent from manager 
to all worker processes 

•  Could send individual messages 

•  Instead, use broadcast – more efficient, faster 

•  int MPI_Bcast(void* buffer, int 
count, MPI_Datatype datatype, int 
root, MPI_Comm comm)	


Gather 

•  All processes need to send same (similar) message to manager 

•  Could implement with each process calling MPI_Send(…) 
and manager looping through MPI_Recv(…)	


•  Instead, use gather operation – more efficient, faster 

•  Messages concatenated in rank order 

•  int MPI_Gather(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int recvcount, MPI_Datatype 
recvtype, int root, MPI_Comm comm)	


•  Note: recvcount = number of items received from each 
process, not total 
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Gather 

•  Maybe some processes need to send longer messages 
than others 

•  Allow varying data count from each process with 
MPI_Gatherv(…)	


•  int MPI_Gatherv(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, 
void* recvbuf, int *recvcounts, int 
*displs, MPI_Datatype recvtype, int 
root, MPI_Comm comm) 

•  recvcounts is array; entry i in displs array 
specifies displacement relative to recvbuf[0] at which 
to place data from corresponding process number 

Scatter 

•  Inverse of gather: split message into NP equal pieces, with 
ith segment sent to ith process in group 

•  int MPI_Scatter(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, 
void* recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, 
MPI_Comm comm)	


•  Send messages of varying sizes across processes in 
group: MPI_Scatterv(…)	


•  int MPI_Scatterv(void* sendbuf, int 
*sendcounts, int *displs, MPI_datatype 
sendtype, void* recvbuf, int 
recvcount, MPI_Datatype recvtype, int 
root, MPI_Comm comm)	
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Reduce 

•  Perhaps we need to do sum of many subsums owned 
by all processors 

•  Perhaps we need to find maximum value of variable 
across all processors 

•  Perform global reduce operation across all group 
members 

•  int MPI_Reduce(void* sendbuf, void* 
recvbuf, int count, MPI_Datatype 
datatype, MPI_Op op, int root, 
MPI_Comm comm)	


Reduce: Predefined Operations 

MPI_Op	
 Meaning Allowed Types 
MPI_MAX	
 Maximum Integer, floating point 
MPI_MIN	
 Minimum Integer, floating point 
MPI_SUM	
 Sum Integer, floating point, complex 
MPI_PROD	
 Product Integer, floating point, complex 
MPI_LAND	
 Logical and Integer, logical 
MPI_BAND	
 Bitwise and Integer, logical 
MPI_LOR	
 Logical or Integer, logical 
MPI_BOR	
 Bitwise or Integer, logical 
MPI_LXOR	
 Logical xor Integer, logical 
MPI_BXOR	
 Bitwise xor Integer, logical 
MPI_MAXLOC	
Maximum value and location * 
MPI_MINLOC	
Minimum value and location * 
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Reduce: Operations 

•  MPI_MAXLOC and MPI_MINLOC	

–  Returns {max, min} and rank of first process with that value 

–  Use with special MPI pair datatype arguments: 
•  MPI_FLOAT_INT (float and int) 
•  MPI_DOUBLE_INT (double and int) 
•  MPI_LONG_INT (long and int) 
•  MPI_2INT (pair of int) 

–  See MPI standard for more details 

•  User-defined operations 
–  Use MPI_Op_create(…) to create new operations 

–  See MPI standard for more details 

All- Operations 

•  Sometimes, may want to have result of gather, scatter, 
or reduce on all processes 

•  Gather operations 
–  int MPI_Allgather(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int recvcount, MPI_Datatype 
recvtype, MPI_Comm comm)	


–  int MPI_Allgatherv(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int *recvcounts, int *displs, 
MPI_Datatype recvtype, MPI_Comm comm) 	
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All-to-All Scatter/Gather 

•  Extension of Allgather in which each process 
sends distinct data to each receiver 

•  Block j from process i is received by process j into 
ith block of recvbuf	


•  int MPI_Alltoall(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, 
void* recvbuf, int recvcount, 
MPI_Datatype recvtype, MPI_Comm 
comm)	


•  Also corresponding AlltoAllv function available 

All-Reduce 

•  Same as MPI_Reduce except result appears on all 
processes 

•  int MPI_Allreduce(void* sendbuf, 
void* recvbuf, int count, 
MPI_Datatype datatype, MPI_Op op, 
MPI_Comm comm)	
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Barrier 

•  In algorithm, may need to synchronize processes 

•  Barrier blocks until all group members have called it 

•  int MPI_Barrier(MPI_Comm comm)	


V. DEBUGGING AND 
PERFORMANCE 
EVALUATION 

Source: http://www.uky.edu/Ag/Entomology/ythfacts/4h/unit1/i&tr.htm 
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V. Debugging and Performance Evaluation  

•  Common errors in parallel programs 

•  Debugging tools 

•  Overview of benchmarking and performance 
measurements 

Common Errors 

•  Program hangs 

–  Send has no corresponding receive (or vice versa) 

–  Send/receive pair do not match in source/recipient or tag 

–  Condition you believe should occur does not occur 

•  Segmentation fault 

–  Trying to access memory you are not allowed to access/ 
memory you should not have been allowed to access has 
been altered (e.g. array index out-of-bounds, uninitialized 
pointers, using non-pointer as pointer) 

–  Trying to access a memory location in a way that is not 
allowed (e.g. overwrite a read-only location) 
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Debugging Tools 

•  Debugging parallel codes is particularly difficult 

•  Problem: figuring out what happens on each node 

•  Solutions: 
–  Print statements, I/O redirection into files belonging to each 

node 

–  Debuggers compatible with MPI 

Print Statement Debugging Method 

•  Each processor dumps print statements to stdout or 
into individual output files, e.g. log.0001, log.
0002, etc. 

•  Advantage: easy to implement, independent of 
platform or available resources 

•  Disadvantage: time-consuming, extraneous 
information in log files 
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MPI-Compatible Debuggers 

•  TotalView 

–  Commercial product, easy-to-use GUI 

–  Installed on production systems such as Crays, probably not 
installed on local machines 

•  Free debuggers + mpirun 

–  Use mpirun command and specify your favorite debugger, 
e.g. mpirun -dbg=ddd -np 4 ./myprog 

–  This option available with MPICH and most other MPI 
implementations 

–  Not as “pretty” as TotalView but it gets job done 

Benchmarking and Performance 

•  Efficiency 

•  Scalability 

•  Performance modeling 

•  Example 



6/15/09 

28 

Efficiency 

•  How well does parallel program perform compared to 
serial program (or parallel program on 1 processor)? 

•  E = efficiency, N = # processors, Tp = time for p 
processors 

€ 

EN =
T1
NTN

Efficiency 

•  Ideally, EN = 1; realistically, EN < 1. 

•  Factors influencing efficiency 
–  Load balance (evenly distribute work for better efficiency) 

–  Concurrency (minimize idle time on all processors) 

–  Overhead (minimize work that serial computation would not 
do, e.g. communication) 
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Scalability: Speedup 

•  How well does parallel program take advantage of 
additional processors? 

•  S = speedup, N = # processors, Tp = time for p 
processors 

€ 

SN =
T1
TN

Determining Scalability of Program 

•  How to measure scalability 
–  Fixed problem size, measure TN for different N’s 

–  Increase problem size proportional to N, compare TN 

•  Repeat performance runs at least 3 times for each N 
(ideally >5 times) 

•  Plot on log-log graph; slope of line determines 
scalability 
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Scalability 

1 

10 

100 

1000 

1 2 4 8 16 32 

W
al

l T
im

e 
(m

in
ut

es
) 

Number of Processors 

Ideal (fixed problem size) 
Realistic (fixed problem size) 
Ideal (growing problem size) 
Realistic (growing problem size) 

Performance Evaluation 

•  Create performance model 

•  Examine parallel algorithm and figure out which parts 
fit in each category 

•  Perform least-squares fit with scalability data 
€ 

TN = TN
communication + TN

computation + TN
serial
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Benchmarking and Performance: Example 

•  Example of real program: three-tier parallel program 
from my dissertation 

•  The problem: Compute diffusion function 
–  Compute f matrices, each matrix and each matrix entry 

independent of all others 

–  Perform matrix-vector multiply for each matrix and take norm 
of result 

–  Take weighted average of f results 

Example: Schematic Overview of Algorithm 
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Example: Categorize Algorithm 

Communication Computation Serial (Idle) 
Manager: send information 
about computation to All 

Manager: Initialize 

All: Compute matrix 
entries using quadrature 

Workers: Send matrix 
entries to Drivers 

Drivers: Compute matrix/
vector multiply and norm 

(Worker processes are idle) 

Drivers: Send results to 
manager 

Compute final function 
evaluation (All processes 
except Manager are idle) 

Tim
e 

Example: Performance Evaluation 

•  N = # processors 

•  d = # drivers 

•  f = stencil size 

•  P(N, f) = max # entries 
computed by 1 proc  

•  ts = message startup time 

•  tquad = avg time to compute one 
entry 

•  tinit = time spent by manager in 
serial 

For three-tier algorithm, 
€ 

TN = TN
communication + TN

computation + TN
serial

€ 

TN = (3N + d −1)ts + P(N, f )tquad + tinit
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Example: Performance Evaluation 

•  Using least squares solve, we obtain 

€ 

TN = (3N + d −1) 3.81077 ×10−3 + P(N, f ) 10.3311+ 3.91500 sec

Bibliography/Resources: Programming 
Concepts and Debugging 

•  Heath, Michael T. (2006) Notes for CS554: Parallel 
Numerical Algorithms, 
http://www.cse.uiuc.edu/cs554/notes/index.html 

•  MPI Deadlock and Suggestions 
http://www.ncsa.uiuc.edu/UserInfo/Resources/
Hardware/CommonDoc/MessPass/
MPIDeadlock.html 

•  TotalView Tutorial 
http://www.llnl.gov/computing/tutorials/totalview/ 

•  Etnus TotalView page http://www.etnus.com/ 
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